Bilinear Compressed Sensing Under Known Signs via Convex Programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BranchHull: Convex bilinear inversion from the entrywise product of signals with known signs

We consider the bilinear inverse problem of recovering two vectors, x and w, in R from their entrywise product. For the case where the vectors have known signs and belong to known subspaces, we introduce the convex program BranchHull, which is posed in the natural parameter space and does not require an approximate solution or initialization in order to be stated or solved. Under the structural...

متن کامل

Optimized Compressed Sensing via Incoherent Frames Designed by Convex Optimization

The construction of highly incoherent frames, sequences of vectors placed on the unit hyper sphere of a finite dimensional Hilbert space with low correlation between them, has proven very difficult. Algorithms proposed in the past have focused in minimizing the absolute value off-diagonal entries of the Gram matrix of these structures. Recently, a method based on convex optimization that operat...

متن کامل

Non-Convex Compressed Sensing from Noisy Measurements

This paper proposes solution to the following non-convex optimization problem: min || x || p subject to || y Ax || q Such an optimization problem arises in a rapidly advancing branch of signal processing called ‘Compressed Sensing’ (CS). The problem of CS is to reconstruct a k-sparse vector xnX1, from noisy measurements y = Ax+ , where AmXn (m<n) is the measurement matrix and mX1 is additive no...

متن کامل

Convex Feasibility Methods for Compressed Sensing

Manuscript received ; revised . Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected]. A. Carmi is with the Asher Space Research Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel. P. Gurfil is with the Faculty of ...

متن کامل

One-bit compressed sensing by linear programming

We give the first computationally tractable and almost optimal solution to the problem of one-bit compressed sensing, showing how to accurately recover an s-sparse vector x ∈ R from the signs of O(s log(n/s)) random linear measurements of x. The recovery is achieved by a simple linear program. This result extends to approximately sparse vectors x. Our result is universal in the sense that with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2020

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2020.3017929